Evolution of Dual-Active-Bridge (DAB) Converters for High-Power Applications

Hirofumi (Hiro) Akagi, IEEE Life Fellow Distinguished Professor Tokyo Institute of Technology November 11, 2023

Application of 3.3-kV SiC-MOSFET Modules to the Bullet Train

Japanese high-speed trains: N700S \therefore Commercial operation: Since July 2020 \therefore Nominal catenary voltage: 25 kV and 50 Hz \therefore Traction: Four induction motors per car \therefore Power conversion: Three-level neutral-pointclamped PWM converters and inverters using 3.3-kV SiC-**MOSFET** modules

A Single-Phase Non-Resonant DAB Converter

R. W. DeDoncker, D. M. Divan, and M. H. Khealuwala, IEEE Trans. IA, Jan./Feb. 1991. M. H. Khealuwala, R. Gascoigne, D. M. Divan, and E. Bauman, IEEE Trans. IA, Nov./Dec. 1992.

☆ Two Technical Terms

from Functionality: Bidirectional Isolated DC-DC Converters from Circuit configuration: Dual-Active-Bridge (DAB) Converters

rightarrow Function/Operation

Both buck and boost functions: $NE_1 > E_2$ and $NE_1 < E_2$ (Max. efficiency at $NE_1 = E_2$) Zero-voltage-switching (ZVS) operation

 \Rightarrow Synchronous Rectification, but limited to Si-MOSFETs and SiC-MOSFETs

Control and Operation of a DAB Converter with SPS

4

Recent Papers on High-Power DAB Converters

- The 100-kW, 16-kHz DAB converter using two 1.2-kV 400-A SiC-MOSFET Quad (4-in-1) modules, presented by the Tokyo Institute of Technology (Tokyo Tech) in Japan 99.2% at 100 kW and E₁ = E₂ = 850 V with Single Phase Shift (SPS) Control [1] 99.0% at 100 kW and E₁ =750 V and E₂ = 850 V with Double Phase Shift (DPS) control [2] R. Haneda and H. Akagi [1] IEEE Trans. on Power Electronics, vol. 35, no. 10, Oct. 2020. [2] IEEE Trans. on Industry Applications, vol. 58. no. 1, Jan./Feb. 2022. Tokyo Tech gave priority to efficiency improvements.
- The 500-kW, 20-kHz DAB converter using four 1.2-kV 1.2-kA SiC-MOSFET Dual (2-in-1) modules, presented by the Karlsruhe Institute of Technology (KIT) in Germany
 97.2% at 504 kW, and E₁ = E₂ = 800 V with SPS Control
 - F. Sommer, N. Menger, T. Merz, N. Soltau, S. Idaka, and M. Hiller, IPEC-Himeji / ECCE-Asia, May 2022. KIT may give priority to cost reductions.

850-V, 100-kW, 16-kHz DAB Converters using 1.2-kV 400-A SiC-MOSFET Quad (4-in-1) Modules at $E_1 = E_2$

R. Haneda and H. Akagi, "Design and performance of the 850-V 100-kW 16-kHz bidirectional isolated DC-DC converter using SiC-MOSFET/SBD H-bridge modules," IEEE Trans. on Power Electronics, vol. 35, no. 10, pp. 10013-10025, Oct. 2020.

850-V, 100-kW, 16-kHz DAB Converter at $E_1 = E_2$

The 2nd-Generation 1.2-kV 400-A SiC-MOSFET Quad (4-in-1) Module

<Full SiC Power Modules>

FMF400BX-24B

HIGH POWER SWITCHING USE INSULATED TYPE

The 2nd-generation version following FMF400BX-24A, currently available from the market.

	-
Drain current I _D 400 A	
Drain-Source voltage V _{DSX} 1 2 0 0 V	
Maximum junction temperature T _{vjmax} 175°C	
 Silicon Carbide MOSFET + Silicon Carbide Schottky Barrier Diode 	
•Flat base Type	
Copper base plate	
RoHS Directive compliant	
 Recognized under UL1557, File E323585 	

Experimental Waveforms ($E_1 = E_2 = 850$ Vdc, 100 kW, 16 kHz)

Intermittent Operation at 850 V, 10 kW, and 16 kHz

Measured Power Losses of the 850-V 16-kHz DAB Converter

Efficiency (dc-to-dc) Comparison at 850 V and 16 kHz

Evolution of DAB Converters in Efficiency (1/2)

** Nano-crystalline soft-magnetic material from Hitachi Metals

13

Evolution of DAB Converters in Efficiency (dc-to-dc) (2/2)

- [4] H. Akagi, T. Yamagishi, N. M. L. Tan, S. Kinouchi, Y. Miyazaki, and M. Koyama, IEEE Trans. IA, vol. 51, Jan./Feb. 2015.
- [5] R. Haneda and H. Akagi, IEEE Trans. PEL, vol. 35, Oct. 2020.

Year (Academia)	2015 (Tokyo Tech) [4]	2020 (Tokyo Tech) [5]	2030?
Switching Devices	Planer-Gate SiC-	Planer-Gate SiC-	Trench-Gate/SJ SiC-
	MOSFET <mark>dual</mark> modules	MOSFET <mark>quad</mark> modules	MOSFET quad modules
Magnetic Material	FINEMET TM *	FINEMET TM *	New or improved
in Transformer	(Thickness: <mark>18 μm</mark>)	(Thickness: 14 μm)	magnetic materials
DC-to-DC Efficiency (Power Loss)	98.3% (1.7%) @ 750 V / 750 V 100 kW and 20 kHz	99.2% (0.8%) @ 850 V / 850 V 100 kW and 16 kHz	99.6% (0.4%) @ 850 V / 850 V 100 kW and 16 kHz

* Nano-crystalline soft-magnetic material from Hitachi Metals

750-V, 100-kW, 16-kHz DAB Converters using 1.2-kV 400-A SiC-MOSFET Quad (4-in-1) Modules at $E_1 \neq E_2$

R. Haneda and H. Akagi, "Power-loss characterization and reduction of the 750-V 100-kW 16-kHz dual-active-bridge converter with buck and boost mode," IEEE Trans. on Industry Applications, vol. 58, no. 1, pp. 541-553, Jan./Feb. 2022.

Experimental Circuit Capable of Operation at $E_1 \neq E_2$

The Photo of the System Capable of Operation at $E_1 \neq E_2$

Comparisons in Waveform and Efficiency between SPS and DPS

New Findings from the 100-kW DAB Converters

Continuous Ratings : 850 Vdc, 100 kW, and 16 kHz, with forced air cooling Power Devices: the 1st-generation 1.2-kV, 400-A SiC-MOSFET quad modules

• Single-phase-shift (SPS) control at $E_1 = E_2 = 850$ V

Measured efficiencies (dc-to-dc) 99.2% at the rated power of 100 kW 99.5% (peak efficiency) at 34 kW 99.2% at 10 kW

 Double-phase-shift (DPS) control at E₁ = 750 V and E₂ = 850 V Measured efficiency (dc-to-dc)
 99.0% at the rated power of 100 kW

Requests to Scientists and Engineers of Power Devices

- Performance improvements in SiC-MOSFET modules:
 - \Leftrightarrow Specific on-state resistance: 1/2
 - rightarrow Switching loss: 1/2
 - \Rightarrow Parasitic inductance between the dc terminals: 1/2
- Cost reduction of SiC-MOSFET modules:
 ☆ Purchase price at a user level: 1/2

Thanks for your Attention!

Tokyo Institute of Technology was inaugurated in 1881. Tokyo Institute of Technology